腸内細菌(ちょうないさいきん)とは、ヒトや動物の腸の内部に生息している細菌のこと。ヒトでは約3万種類[1]、100兆[2]-1000兆[1]個が生息し、1.5kg-2kgの重量になる[1]。
ヒトの場合、腸内細菌には主に5つの働きがある[1]。
母乳栄養による乳児の死亡率の低下
死亡した乳児(新生児を除く)を対象として調査した結果(1957年東京都)によれば、母乳栄養、混合栄養、人工栄養の各栄養法による死亡率比は、成熟児については、ほぼ1:2:3、未熟児については、ほぼ1:2:4の値を示していた[16]。 特にビフィズス菌は母乳栄養の糞便に多く存在する。正常な母乳栄養児のフローラはビフィズス菌が極めて優勢である。腸内のビフィズス菌を旺盛にするために母乳に多く含まれる乳糖やオリゴ糖などが有効である[16]。ビフィズス菌は乳糖やオリゴ糖などを分解して乳酸や酢酸を産生して腸内のpHを顕著に低下させ[17]、善玉菌として腸内の環境を整えるほか、花粉症などアレルギー症状の緩和にも貢献していることが分かってきた[18]。乳幼児に多いロタウイルスによる感染性腸炎の抑制をする可能性が報告されている[19]。ラクトフェリンは、母乳・涙・汗・唾液などの外分泌液中に含まれる鉄結合性の糖タンパク質である。ラクトフェリンは、強力な抗菌活性を持つことが知られている。グラム陽性・グラム陰性に関係なく多くの細菌は、生育に鉄が必要である。トランスフェリンと同様、ラクトフェリンは鉄を奪い去ることで、細菌の増殖を抑制する[20][21]。母乳の中でも、とりわけ出産後数日間に分泌される初乳にはラクトフェリンが多く含まれている。授乳により免疫グロブリンやラクトペルオキシダーゼなどと共に、母体からラクトフェリンが新生児に取り込まれる。ラクトフェリンはこれらの因子と共同で、免疫系が未熟な新生児を外敵から防御していると考えられる。乳酸菌やビフィズス菌などの腸内細菌は、生育の鉄要求性が低く、ラクトフェリンは抗菌活性を示さないあるいは、むしろ増殖を促進する[20][21]。
短鎖脂肪酸の合成
消化管んは自力ではデンプンやグリコーゲン以外の食物繊維である多くの多糖類を消化できないが、大腸内の腸内細菌が嫌気発酵することによって、一部が酢酸、酪酸やプロピオン酸のような短鎖脂肪酸に変換されてエネルギー源として吸収される。健常者ではこれらの3種類が短鎖脂肪酸の97%を占め、潰瘍性大腸炎罹患者では罹患部位が広がるごとに短鎖脂肪酸のうち乳酸が占める割合が大きくなってくる。健常者の場合、大腸内で乳酸が生成されると腸内細菌により速やかに酢酸、酪酸、プロピオン酸、炭酸ガス、水素、メタンなどに代謝される[22]。食物繊維の多くがセルロースであり、人間のセルロース利用能力は意外に高く、粉末にしたセルロースであれば腸内細菌を介してほぼ100%分解利用されるとも言われている。デンプンは約4kcal/g のエネルギーを産生するが、食物繊維は腸内細菌による醗酵分解によってエネルギーを産生し、その値は一定でないが、有効エネルギーは0~2kcal/gであると考えられている。また、食物繊維の望ましい摂取量は、成人男性で19g/日以上、成人女性で17g/日以上である[23]。食物繊維は、大腸内で腸内細菌によりヒトが吸収できる分解物に転換されることから、食後長時間を経てから体内にエネルギーとして吸収される特徴を持ち、エネルギー吸収の平準化に寄与している。
小腸では栄養素を吸収しても、小腸組織の代謝には流用されずに即座に門脈によって運び去られ、小腸自体の組織は動脈血によって供給される栄養素によって養われる。しかし、大腸の組織の代謝にはこの発酵で生成されて吸収された短鎖脂肪酸が主要なエネルギー源として直接利用され、さらに余剰部分が全身の組織のエネルギー源として利用される。
ウマなどの草食動物ではこの大腸で生成された短鎖脂肪酸が主要なエネルギー源になっているが、ヒトでも低カロリーで食物繊維の豊富な食生活を送っている場合にはこの大腸での発酵で生成された短鎖脂肪酸が重要なエネルギー源となっている。
ヒトの結腸、特に結腸後半の粘膜は、酪酸を産生する腸内細菌が作る酪酸を主たるエネルギー源として利用している[22]。酪酸は、大腸の栄養エネルギーの70-90%を占めている[24]
酪酸を生成する代表的な酪酸菌であるクロストリジウム・ブチリカムは、偏性嫌気性芽胞形成グラム陽性桿菌である。クロストリジウム属のタイプ種でもある。芽胞の形で環境中に広く存在しているが、特に動物の消化管内常在菌として知られている。日本では宮入菌と呼ばれる株が酪酸菌の有用菌株として著名であり、芽胞を製剤化して整腸剤として用いられている[25]。クロストリジウム属の一部の菌は酪酸菌として知られ、漬物の酪酸臭の原因となる[26]。
腸内細菌が産生した酪酸が、ヒストンのアセチル化を促進し、p21遺伝子を刺激し、細胞サイクルをG1期で留めるタンパク質であるp21が大腸がんをG1期に留め置き大腸がんを抑制することが指摘されている[27][28]。酪酸生成能が高いButyrivibrio fibrisolvensをマウスに投与したところ、酪酸生成量が増加し、発癌物質で誘発した大腸前癌病変の形成が抑制され、大腸がんを予防、抑制する可能性が指摘されている[29]。大腸癌患者の糞便を健常者のものと比較すると有機酸濃度が低く、特にn-酪酸の濃度がとりわけ低値であったことが報告されている[30]。
ビタミンの合成
編集ビタミンKは食物からの摂取と並んで、幾つかの種類に属する複数腸内細菌によっても供給される。ビタミンKは血液凝固作用(止血)にも関係し、これが不足すると各種内出血といった欠乏症が発生する。ヒト成人に於いては通常、腸内細菌による供給だけでも充分必要量を賄えるが、生まれたばかりのヒト新生児では、まだ充分に腸内細菌叢が形成されて居ないため、これを充分に生産出来ない事から、腸内出血(血便)などの異常が発生しやすい。これに加え、胎児や新生児では出産に際して骨を柔らかくするためP450により骨のカルシウム定着にも関係しているビタミンKを体内で分解しているとの説もある[31]。また成人でも抗生物質の投与により腸内細菌叢が損なわれた際には、同様に欠乏症が発生し得る。
ビオチン(ビタミンB7)の一日の目安量は、成人で45μg。腸内細菌叢により供給されるため、通常の食生活において欠乏症は発生しない[32]。ピリドキシン(ビタミンB6)も腸内細菌により供給されている[33]。
食物繊維を多く摂ると腸内細菌によるリボフラビン(ビタミンB2)の合成が盛んになる[34]。
生体内においては、ナイアシン(ビタミンB3)はトリプトファンから生合成される。ヒトの場合は、さらに腸内細菌がトリプトファンからナイアシン合成を行っている。
プロピオン酸生産菌はビタミンB12を生産する主要な菌である[35][36][信頼性要検証]。ビタミンB12は、特定の真正細菌及び古細菌による原核生物によってのみ天然に産生され、多細胞または単細胞の真核生物によって産生されたものではない[37][38]。ヒトや他の動物のいくつかの腸内細菌によって合成されるが、ビタミンB12が吸収される小腸からさらに遠位の大腸でビタミンB12が産生されているので、ヒトは大腸で作られたビタミンB12を吸収することができないが[39] 、牛や羊のような反芻動物は細菌を胃で培養し産生されたビタミンB12を腸内で吸収する[39]。
腸内細菌は、パントテン酸(ビタミンB5)、葉酸(ビタミンB9)、リボフラビン、ナイアシン(ビタミンB3)、ビオチン(ビタミンB7)、ビタミンB6、ビタミンB12、ビタミンKも生成する[40]。また、酵母は、ビタミンB1を合成することができる[41]。
ビフィズス菌は、ビタミンB1、ビタミンB2、ビタミンK、その他ビタミンB群を生成する[16]。ビフィズス菌(B. infantis、B. breve、B. bifidum、B. longum及びB. adolescentisのすべて)で菌体内にビタミンB1、B2、B6、B12、C、ニコチン酸(B3)、葉酸(B9)及びビオチン(B7)を蓄積し、菌体外にはビタミンB6、B12及び葉酸を産生した。ヒト(成人)の腸内の平均量のビフィズス菌の推定ビタミン産生量はビタミンB2、B6、B12、Cおよび葉酸で所要量の14-38%を占め無視できない割合と考えられる[42]。
乳酸菌もビタミンCを微量ながら生成する。野菜や果物を摂れない遊牧民は、乳酸発酵された馬乳酒を1日最低1-3リットル程度飲んでいる[43][44]。馬乳酒にはビタミンCが100mlあたり8-11mg含まれている[45]。
ヘムの分解物であるビリルビンの代謝
肝臓においてグルクロン酸転移酵素によりヘムの分解物であるビリルビンはグルクロン酸抱合を受け、水に溶けるようになる。抱合型ビリルビンはほとんどが胆汁の一部となって十二指腸に分泌される。抱合型ビリルビンの一部は大腸に達し、腸内細菌の働きにより還元されてウロビリノーゲンに代謝され、腸から再吸収され、腎臓を経て、尿として排泄される。この循環を腸肝ウロビリノーゲンサイクルと呼ぶ。ウロビリノーゲンは、抗酸化作用を有し、DPPHラジカル除去作用は他の抗酸化物質(ビタミンE、ビリルビン及びβ-カロチン)よりも高い値を示す[46][47]。再吸収されたウロビリノーゲンが体内で酸化されると黄色のウロビリンとなり尿から排泄される。 腸内に残るウロビリノーゲンはさらに還元されてステルコビリノーゲンになり、別の部位が酸化されて最終的にはステルコビリンになる。このステルコビリンは大便の茶色の元である。 なお、ビリルビンが胆汁として分泌されずに体内に蓄積されると黄疸になる。
水素ガスの産生と抗酸化作用
難消化性である食物繊維や乳糖の摂取と腸内細菌により呼気やおならへのガスの産生と排出が高まる。産生されるガスは水素とメタンが多いが、メタンは個人差がありメタン産生菌を有していないとメタンは産生されない。おならと呼気の水素量の相関は0.44と高い[48]。
αグルコシダーゼ阻害剤である糖尿病治療薬のアカルボースを服用すると炭水化物の吸収が抑制され大腸の腸内細菌により水素などが発生するが、アカルボースの服用が心血管事故を抑制する可能性があり、この原因として高血糖の抑制に加えて、呼気中に水素ガスの増加が認められ、この増加した水素の抗酸化作用により心血管事故を抑制するメカニズムが想定されている[49]。
水素による抗酸化作用が各種研究で報告されているところであり、また、腸内細菌は水素を産生している。コンカナバリンAを用いて肝炎を誘導したマウスの実験では、抗生物質を使用して腸内細菌による水素発生を抑制させたマウスと比較して、通常の腸内細菌が発生させた水素はマウスの肝臓の炎症を抑制することが認められた[50]。
腸内環境の維持
乳酸菌の腸内細菌は、腸内で担体として増加することにより菌体が腸管老廃物を吸着して排出させている可能性がある[44]。健康なヒトの腸内にはたくさんの種類の微生物が生息しており、ほぼすべての人の腸内からは、ラクトバシラス属やビフィドバクテリウム属の乳酸菌が検出される。ヒトの糞便中1gあたりの菌数は、ビフィズス菌が100億個、ビフィズス菌以外の乳酸菌が10-100万個であるといわれている[51]。これらの乳酸菌は、俗に言う「腸内の善玉菌」の一種として捉えられる場合が多く、腸内常在細菌叢(腸内フローラ)において、これらの細菌の割合を増やすことが健康増進の役に立つという仮説が立てられている。ただしその有効性については、意義があるとする実験結果と関連が認められないとする結果がそれぞれ複数得られており、結論が出ていないのが現状である。 #善玉菌と悪玉菌を参照のこと。
蜂蜜の中には芽胞を形成し活動を休止したボツリヌス菌が含まれている場合がある。通常は摂取してもそのまま体外に排出されるが、乳児が加熱していない蜂蜜を摂取すると体内で発芽して毒素を出し、中毒症状(乳児ボツリヌス症)を引き起こし、場合により死亡することがあるため、注意を要する。十分に腸内細菌の発達したヒトでは生の蜂蜜を摂食しても、腸内細菌が芽胞からのボツリヌス菌の増殖を妨げる(詳細は蜂蜜を参照のこと。)[52]。
腸内細菌であるいくつかのプロバイオティクス株が過敏性腸症候群や慢性便秘の症状の減少に効果があるとされている。症状の減少をもたらす可能性が最も高い腸内細菌は、以下のようなものが掲げられている。
自閉症予防の可能性
自閉症児と健康児の腸内細菌を比較するとクロストリジウム属の細菌が平均して10倍程度多い状況が報告されている。乳幼児時に多種多量の抗生物質を投与され腸内細菌の組成が破壊され、クロストリジウム属の増殖とともに自閉症に至った例が紹介されている。幼い脳にダメージを与えるクロストリジウム属の神経毒素が原因であると指摘している[56]。
病原性クロストリジウム属菌は、(Shaw 2010)によって、自閉症をもつ小児の尿より本属が作り出す物質3-(3-ヒドロキシフェニル)-3-ヒドロキシプロパン酸(略称:HPHPA) が高濃度で検出される報告がなされ、カビ毒の向神経作用が注目された[57]。
フィンランドの調査で、腸内フローラが自閉症を予防する効果がある可能性が示唆されている。ウィキペディアより
腸内細菌は大腸より小腸に多く存在します。